2. 离解速率随脉冲能量 E 的变化

在本实验中,透镜焦距较短 (f=5 厘米),焦斑 尺寸小,因而焦斑处功率密度 I,较大,倘若离解阈值 功率密度不是特别大的话,应该符合文献[1]所指出 的条件,从而得到 $-\ln(P/P_0)$ 对 $E^{3/2}$ 的正比关系。由 图 2 可以看出甲醇的离解是遵从此种规律的。

图 2 -ln(P/P₀)随 E 的变化 n=1000 脉冲; P₀=10 托; v=1031.56 厘米⁻¹

3. 离解速率随初压 Po 的变化

图3给出一h(P/P₀)随甲醇的初始压力 P₀的 变化。可以看出,在实验对应的压力范围内,一h(P /P₀)随 P₀线性增加,说明离解与分子碰撞有密切关 系。文献[2]曾报道,在他们的实验中,离解速率系数 与 CH₃OH 的初始压力无关,但未发表相应的实验 曲线。 我们认为,这种说法不仅同我们的实验结果

图 3 -ln(P/P₀)随 P₀的变化 n=1000脉冲; E=1 魚耳; v=1055.58 厘米⁻¹

是矛盾的,同时也同他们自己所观察到的产物发光 延迟现象相矛盾。

4. 离解速率随激光谱线频率 v 的变化

离解速率随激光谱线频率的变化即所谓红外多 光子离解谱给红外多光子离解效应提供了新的内 容。P.B.AmfapriyMaH等人^[3]曾对SF₆及C₂H₄ 做过这种研究,他们发现多光子离解谱与线性吸收 谱之间发生了位移。由图4可以看出,CH₃OH的红 外多光子离解谱基本上保持了相应线性吸收谱的特 征(轮廓),但前者随频率变化的相对幅度要比线性 吸收系数相对变化幅度小得多。实际上,前者的变 化只有一两倍,而后者却有着数量级的区别。

n=1500 脉冲; E=1 焦耳; P₀=16.7 托; ----- 表示线性吸收峰、谷的位置

本工作曾得到孔繁敖、刘玉申、盛六四同志的热 情帮助,特致谢意。

参考文献

- [1] 马兴孝,胡照林; 《物理学报》,1978, 27, No. 6, 645.
- [2] S. E. Bialkowski, W. A. Guillory; J. Chem.
- Phys., 1977, 67, No. 5, 2061~2067.
- [3] R. V. Ambarzumian; Sov. J. Quan. Elec., 1977,
 7, No. 4, 412. Р. В. Амбарпумян и др., ЖЭТФ, 1975, 69, 1956.

(中国科学技术大学 张允武 俞书勤 章吉祥 马兴孝)

成象法测量空心玻璃微球壁厚

这里报导我们用光线传输矩阵的方法,得出了 球壳壁厚的计算公式,以及利用光学成象法测量球 壳壁厚的技术。

图1表示当微球为空心球壳时的光路图,0为

光源点, O'为虚象点。如果从O点出发跟踪光线至 O'点止,那么首先经过空气距离 $d_1 = S(物距)$ 到达第 一面 $r_1 = R_0$ 再经过玻璃介质距离 $d_2 = 4$ 到达第二面 $r_2 = (R - 4)$,再经过空气介质距离 $d_3 = 2(R - 4)$ 到

· 57 ·

图1 空心微球光路图

达第三面 $r_3 = -(R-4)$, 再经过玻璃介质 $d_4 = 4$ 到 达第四面 $r_4 = -R$,最后经过空气距离 d_5 (象距)到达 O',由于 O' 是虚象点,所以最后的距离 $d_5 = -S'$ 。

用矩阵光学来讨论这个光路,并设空气的折射 率为1,玻璃折射率为n,则由物点O到象点O'的 光线传输矩阵为:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & -S' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{n-1}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{d}{n} \\ 0 & 1 \end{pmatrix} \\ \times \begin{pmatrix} 1 & 0 \\ -\frac{1-n}{R-4} & 1 \end{pmatrix} \begin{pmatrix} 1 & 2(R-4) \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1-n}{R-4} & 1 \end{pmatrix} \\ \times \begin{pmatrix} 1 & \frac{A}{n} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{n-1}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & S \\ 0 & 1 \end{pmatrix}$$

由此求得光线传输矩阵元 *A*、*B*、*C*、*D*,并得到空心 球壳光学系统的组合焦距为:

$$f = -\frac{1}{C} = -\frac{nR(R-\Delta)}{2\Delta(n-1)} \tag{1}$$

可见它相当于一个长焦距的负透镜。

另外,由光线传输矩阵的物理意义还知道,点光 源 *O* 成象到点 *O*' 的条件是 *B* ≡ 0, 即:

$$\frac{1}{n(R-\Delta)}(nRS-2\Delta R+\Delta Sn+2nR^2-2\Delta S)$$
$$-\frac{S'}{nR(R-\Delta)}(nR^2-2\Delta R-2\Delta S+n\Delta R)$$
$$+2\Delta Sn)=0$$

由此得出空心球壁厚 4 的表示式为:

$$\Delta = \frac{nR^2(S - S' + 2R)}{2R^2 + 2SS'(n-1) + (2-n)R(S - S')}$$
(2)

这是一个比较复杂的算式,我们可以在实际应用时,把光源点 O 放置得足够远,使 $S \gg S' \approx f$,又因为 $R \gg 4$,所以从公式(1)得到 $f \gg R$,即 $S' \gg R$ 。这样设置光路之后,公式(2)可以简化为:

$$\Delta = \frac{nR^2}{2(n-1)S'} \tag{3}$$

在实用中,为了能够量得象距S'以后马上就 估计出小球的壁厚4,可以将公式(3)画成一系列曲 线,每条曲线和一个确定的R值相对应。下面图2我们取 $\phi=2R$ 为50、80、90、100、110、120、150 微米,分别作出它们所对应的4-S'曲线,其中折射 率n=1.476。为了实用,我们将4轴相对于S'轴放 大了 $\frac{2}{3}$ ×100倍。

对于充气空心球,可以用同样的光线传输矩阵 进行计算,只是把其中一个矩阵 $\begin{pmatrix} 1 & 2(R-J) \\ 0 & 1 \end{pmatrix}$ 换以 $\begin{pmatrix} 1 & \frac{2(R-J)}{n'} \\ 0 & 1 \end{pmatrix}$ 就行了,其中n'为所充气体的 折射率。但这里使用另一种方法来讨论,首先,设想 把充气空心微球分成二部分,一部分是不充气空心 球,另一部分是折射率为n'的实心球(见图 3)。这二 部分的组合焦距为 $\frac{1}{F_A} = \frac{1}{F_B} + \frac{1}{F_o}$,若把实心球当

• 58 •

气 体	氩	氮	氦	氢	氧	空气	乙烷	甲烷
k '	0.00028	0.00029	0.00003	0.00014	0.00027	0.00029	0.00074	0.00043

图 3 充气空心球的分解

作厚度为 2R 的厚透镜,则它的焦距为

$$F_{\sigma} = \frac{n'R}{2(n'-1)},$$

而 F_B由公式(1)给出,于是得:

$$\frac{1}{F_A} = -\frac{2(n-1)\Delta}{nR^2} + \frac{2(n'-1)}{n'R}$$

当 $S \gg S'$ 时, $(-F_A)$ 就是象距 S', 于是上式化为

$$\Delta = \frac{nR^2}{2(n-1)S'} + \frac{n(n'-1)R}{n'(n-1)}$$
(4)

或者写成如下形式:

$$\Delta_{\hat{\pi}\hat{n}} = \Delta_{\hat{\pi}\hat{\pi}\hat{n}} + \delta$$

其中δ为:

$$\delta = \frac{n(n'-1)R}{n'(n-1)}$$
 (4)'

δ是因充气而引起的壁厚修正量。若微球不充气,则 n'=1, $\delta=0$, 公式(4)即转化成公式(3)。

这里折射率 n' 与所充气体种类有关, 也与所充 气体的气压、温度有关:

$$n' = 1 + \Delta n = 1 + kP \frac{273}{T}$$
 (5)

上式中P、T分别为所充气体的压强和温度,k为所 充气体在 $0^{\circ}C(T_0=273 \text{ K})$ 和P=1大气压情况下的 折射率修正数,对于氢气而言,k=0.00014,不同气 体有不同的k值,见上表。 考虑到室温下($T \approx 293$ K),即使P为百大气压数量级, $4n = kP \frac{273}{T}$ 也远小于1,所以将(4)式分母中的 $n' \approx 1$ 略去,则得到:

$$\Delta = \frac{nR^2}{2(n-1)S'} + \frac{nkPR}{(n-1)}\frac{273}{T}$$
(6)

或者充气修正量δ为:

$$\delta = \frac{knRP}{(n-1)} \frac{273}{T} \tag{6}$$

公式(6)就是已知充气空心球所充气体(k)及所充气 压(P)和温度(T)的情况下,由测得的象距 S' 求充气 空心球壁厚的公式。

测象距 8' 的关键在于精确的判定象点。因为 不同的波长有不同的成象位置(色差),所以在测象 距时,在测量显微镜视场里光斑大小的变化中,难以 判定哪一个位置是光斑最小的象点。 经验指出,选 定由微球自身清楚开始,向象点方向调焦,光斑中心 出现第一个红色最小光点时,将这个位置作为象点 位置,可以减少不同微球测量中的相对误差,由于对 比度高,甚至比单色光源还要准确些。 用这种办法 测定象距,误差可在 10 微米以内,相应的壁厚测量 误差小于十分之一微米。

为检验所用测量方法的准确性,可以对已测壁 厚的光球,进行剖球,做电子显微照象,实际量出壁 厚。

喷射现象的全息照相术

为了观测喷射现象中各个粒子在空间的分布以及粒子的形状和大小,我们应用了几种不同的全息 照相光路,进行了实验分析。

(1) 透射式离轴全息照相光路

照相时,把激光分为两束,一束用来照明物场, 另一束则充作参考光,如图1所示,由物场中粒子散 射的光(物光)和那束离轴参考光发生干涉,并记录 在全息干板上,便形成了一幅喷射粒子场的离轴全 息图。

拍摄粒子场的全息图时,物场可以直接用激光 束来照明,也可以用经过漫射介质层的激光束来照 明。当用漫射激光束照明物场时,其再现象可以容